
Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1898 | P a g e

Module Based And Difference Based Implementation of Partial

 Reconfiguration On FPGA: A Review

Trailokya Nath Sasamal*, Rajendra Prasad**

 *
,
**(Department of Electrical & Electronics Engineering ,Mewar University,Rajasthan)

ABSTRACT
Dynamically adaptable computing systems are

promising research area at developing systems

which can adapt to changes in their environment

while executing. The premisses for such systems

are reconfigurable computing systems which allow

the system hardware to be changed periodically in

order to execute different applications on the same

hardware. Partial reconfiguration is the

prerequisite of reconfigurable computing, as it

allows time-sharing of physical resources for the

execution of multiple design modules. Moreover,

partial reconfigurable modules can be swapped in

or out on the fly from the operating environment

control while other modules in the base design

continue functioning without incurring any system

downtime. This results in dramatically increase in

speed and functionality of FPGA based system.

This paper presents a review of existing Partial

Reconfiguration methods, Reconfiguration steps,

Medium of partial reconfiguration, application on

Xillinx FPGA.

Keywords - FPGA, Partial reconfiguration,

Reconfiguration, Reconfigurable computing

1. INTRODUCTION

GPPs (general purpose processors) are more flexible

as they have capability to execute/compute any kind

of task. This portion of an implementation simply as

the “software” portion. Design time and NRE cost are

low, because the designer must only write a program,

but need not do any digital design. Flexibility is high,

because changing functionality requires only

changing the program. But from performance (in

terms of silicon area, power usage and speed) point of

view, they are far away from ASICs/ ASIP.

A single-purpose processor results in several design

metric benefits and drawbacks, which are essentially

the inverse of those for general purpose processors.

Performance may be fast, size and power may be

small, and unit-cost may be low for large quantities,

while design time and NRE costs may be high,

flexibility is low. An application-specific instruction-

set processor (or ASIP) can serve as a compromise

between the above processor options. Application

specific integrated circuits (ASICs) and application

specific instruction set processors (ASIPs) use in

order to execute critical tasks quickly. This approach

gives us much performance as hardware optimized

for a particular application, but not flexibility because

application is not always adapt to the hardware.

Reconfigurable computing takes the benefits of both

hardware and software. It tries to fill the gap between

hardware (ASIC/ASIP) and software

(GPP/microcontroller) approaches as shown in Fig.1.

[2]. Reconfigurable computing is defined as the study

of computation using reconfigurable devices [3]. The

different models, architectures, compilation and

scheduling of tasks, reconfiguration methods, optimal

mapping of the design library and the state-of-the-art

of reconfigurable computing systems (RCSs) are

described in [4].

This paper is organized as follows: section 1 give the

brief introduction about reconfigurable computing

followed by section 2 that describes the different

approaches for reconfiguration, section 3 describes

the different types of partial reconfiguration (PR) and

reconfiguration steps. Medium of partial

reconfiguration are discussed in section 4, section 5

includes conclusion.

 Fig.1 Flexibility vs. performance of existing

processors

Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1899 | P a g e

2. RECONFIGURATION METHODS

Reconfigurability denotes the capability of

programmable devices such as FPGAs; to change

customized designs by loading different configure

[1][3][14]. Reconfiguration can be divided into two

groups: Static and Dynamic as shown in Fig.2.

Fig.2. Types of reconfiguration

2.1Static Reconfiguration

This is the most common and simplest

reconfiguration approach also referred as compile-

time reconfiguration [14]. In this approach, each

application consists of a single configuration

bitstream. All reconfigurable modules are loaded

with their respective configurations before

commencing the operation. Furthermore, after

starting the operation hardware resources remain

static during the whole life span of the application as

depicted in Fig.2.

 Fig.2.1Static reconfiguration

 2.2 Dynamic Reconfiguration

Run-time reconfigurable systems, or dynamic

reconfigurable systems, are capable of modifying

parts of the functionality configured on the FPGA

while the chip is running. By exploiting dynamic

reconfiguration, we could build a system which

dynamically adapts to the executed application with a

fraction of time. This is an advance technique that

uses a dynamic scheme to re-allocates the hardware

resources at run-time [5], [11]. It utilizes the physical

hardware resources in a much better way. As per

application demand, it allows hardware resources to

be logically added or removed from the operating

control environment on the fly while other base

modules continue to operate. Dynamic

reconfiguration (also called as RTR) allows

reconfiguration and execution to proceed at the same

time as depicted in Fig.2.1. Statically reconfigurable

devices require execution interrupt. The idea behind

Partial dynamic reconfiguration or PR technique is to

reconfigure only the needed part of the device. Partial

reconfiguration is not supported on all FPGAs. For

example, the Xilinx Virtex series of FPGAs

(Virtex,Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4)

allows partial reconfiguration of the FPGA.

 Fig.2.2 Dynamic Global reconfiguration

3. PARTIAL RECONFIGURATION

An important feature in the Virtex architectures is the

ability to reconfigure a portion of the FPGA while the

remainder of the design is still operational. Partial

reconfiguration is useful for applications that require

the flexibility to change portions of a design without

having to completely reconfigure the entire device.

With this capability, entirely new application areas

become possible: In-the-field hardware upgrades and

updates to remote sites, Runtime reconfiguration,

Other potential benefits include: Reduced device

count, Reduced power consumption, More efficient

use of available board space. This vendor-dependent

technology provides common benefits in adapting

hardware algorithms during system runtime, sharing

hardware resources to reduce device count and power

consumption, shortening reconfiguration time, etc.

[5][6][16]. There are two styles of partial

reconfiguration of FPGA devices from Xilinx:

module-based and difference-based.Typically

partial reconfiguration is achieved by loading the

partial bitstream of a new design into the FPGA

configuration memory and overwriting the current

one. Thus the reconfigurable portion will change its

behavior according to the newly loaded

configuration. The reconfiguration speed (or

D ow nload the

configuration

Begin

Execute

End

Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1900 | P a g e

reconfiguration throughput) is a significant

parameter, which determines the switching time of

PR modules. This factor must be taken into account

in many cases where performance-critical

applications require fast switching of IP cores.

3.1Module-based Partial Reconfiguration

Module-based partial reconfiguration permits to

reconfigure distinct modular parts of the design. To

ensure the communication across the reconfigurable

module boundaries, special bus macros ought to be

prepared. It works as a fixed routing bridge that

connects the reconfigurable module with the rest part

of the design. Module-based partial reconfiguration

requires to perform a set of specific guidelines during

at the stage of design specification. Finally for each

reconfigurable module of the design, separate bit-

stream is created. Such a bit-stream is used to

perform the partial reconfiguration of an FPGA.

Reconfigurable modules (RM) has been modeled in

VHDL and implemented on Xilinx Virtex-4

(XC4VFX12) FPGA board with partial

reconfiguration. Partial reconfiguration saves the

silicon area by allowing multiple configurations to be

swapped in or out of the device and provide

flexibility to selectively replace the one configuration

by the other explains in [17].

Problem of this design flow is that the partial

reconfiguration bitstream can only be placed to a

fixed region. During dynamic reconfiguration if the

allowed partial reconfigurable region occupied by

other partial reconfigurable module, then a new

partial bitstream file must be generated. This increase

the cost of storing the partial bitstream.

Fig.3.1 static and reconfigurable Modules

FPGA modules are divided into two parts: static and

reconfigurable modules. The reconfigurable parts (A,

B, C, D modules, etc.) are independent parts of the

input design that need not be active during the whole

application runtime, Fig.3.1. They share common

areas (slots) inside a target device; this is based on

the assumption that they are not required to run at the

same time in parallel. Usually they reside as a

bitstream in a memory outside the FPGA. There

some cases they also can be stored in the memory

available inside the FPGA (Block RAM). The static

part is such a part of an input design that is active

during the whole application runtime. It is placed in

the “static” area of a target device that is kept intact
all the time. In addition to its standard function it has

to provide an infrastructure to load and unload other

(dynamic) parts of the design, which is system

scheduling, data management, and interface

management.

The static part must include the configuration

controller and logic required for data and interface

management. All inputs/outputs of the application are

managed by the static part that communicates with

dynamic modules through a fixed interface called

Bus micros.

3.1.1 Bus micros

Bus macros are tri-state buffers at relative fixed

positions which used as fixed data paths for signals

going between a reconfigurable module and another

module i.e. locking the routing between the dynamic

and the static part and all connections between the

dynamic and static part must pass through a bus

macro.The HDL code should ensure that any

reconfigurable module signal that is used to

communicate with another module does so only by

first passing through a bus macro. There are Virtex,

Virtex-E, Virtex-II, and Virtex-II Pro series specific

versions of the bus macro. Each bus macro provides

for 4 bits of intermodule communication, Fig.3.1.1.

As many bus macros as needed must be instantiated

to match the number of bits traversing the boundaries

of the reconfigurable modules.

Fig.3.1.1 Bus macro for 4 bits of intermodule

communication

Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1901 | P a g e

As an example, if reconfigurable module A

communicates via 32 bits to module B, then eight

(32/4) bus macros will need to be instantiated to

define the data paths between modules A and B.

Fig. 3.1.2 Placement of bus micro using FPGA editor

Dataflow in bus macro is always unidirectional. So

Bus macros configured for Data flow in only one

direction and it is fixed, Fig.3.1.2. Xilinx Provides

these Bus Macros.

Partial reconfiguration of Virtex devices can be

accomplished through the SelectMAP, JTAG, or

ICAP configuration interfaces. Instead of resetting

the device and performing a complete

reconfiguration, new data is loaded to reconfigure a

specific area of a device, while the rest of the device

is still in operation. The difference-based partial

reconfiguration design flow described in this paper

allows a designer to make small logic changes using

FPGA_Editor and generate a bitstream that programs

only the difference between the two versions of the

design. Switching the configuration of a module from

one implementation to another is very quick because

the bitstream differences can be much smaller than

the entire device bitstream. The partial

reconfiguration feature has been investigated in some

applications such as [11][12][17][18].

Fig.3.1.3 Dynamic partial Global reconfiguration

3.2 DIFFERENCE BASED PARTIAL

RECONFIGURATION

Difference-based design is currently very efficient for

small design .The idea of this type of PR is as

following: Suppose there are two partial

reconfigurable modules, namely X and Y .Instead of

creating a full configuration bitstream for each of

them, we only create the full configuration bitstream

of X. For module Y, we compare its circuit

description frame-by-frame with that of module X

and then create a partial reconfiguration bitstream

that only modifies the frames with differences. With

that partial reconfiguration bitstream, we can

reconfigure module X into module Y. Difference-

based partial reconfiguration, which is useful for

making small on-the-fly changes to design

parameters such as logic equations, filter parameters,

and I/O standards. This design flow is not

recommended for making large changes in the

functionality or structure of a design, for example,

changing an entire algorithm. When there are sizable

changes or the routing has to be modified, the

recommended flow is to start from the HDL.
 The main objective for difference-based

partial reconfiguration is allow small design changes.

For example, perhaps LUT programming or an I/O

standard needs to be simultaneously changed and

loaded. These changes can be made easily by directly

editing the routed NCD file in the Xilinx

FPGA_Editor application as shown in Fig.3.2. While

many different types of changes can be made to an

FPGA design, this paper addresses changing I/O

standards, block RAM contents, and LUT

programming using FPGA_Editor.
After the changes are made, the BitGen program is

used to produce a bitstream that only programs the

differences between the original design and the new

one. Depending on the changes, this partial bitstream

can be much smaller than the original bitstream.

These bitstreams can be loaded quickly and easily by

the software. All that is required is an understanding

of how to make logic changes using the

FPGA_Editor application.

Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1902 | P a g e

Fig.3.2 shows changing the Geqn from A3*A2 to

A3*~A2.

4. MEDIUM OF PARTIAL

RECONFIGURATION

Four methods of reconfiguring a device, each has

applications where desirable:

 Externally

 Serial configuration port

 JTAG (Boundary Scan) port

 SelectMap port

 Internally

 Though the Internal

configuration access port

(ICAP) using an embedded

microcontroller or state

machine

Xilinx is the main vendor whose silicon products and

tools support the PR feature. The Virtex-II,Virtex-4

and Virtex-5 family FPGAs all provide a dedicated

Internal Configuration Access Port (ICAP), which

allows for internal access to and modification of the

configuration data, Fig.4.1. Having ICAP on-chip

leads to an easy and efficient way of building a run-

time self-reconfigurable system, in which a soft-

processor is using the ICAP as a user-friendly

configuration controller. The ICAP is a simplified

substitute of the Xilinx SelectMap reconfiguration

solution, which is a byte-parallel external

reconfiguration interface that can achieve the highest

possible reconfiguration speed .It is assumed that the

ICAP will only be used for partial reconfiguration,

since the part of the FPGA that controls the ICAP

must not reconfigured through ICAP. Xilinx's EDK

(Embedded Development Kit) is the development

package for building MicroBlaze (and PowerPC)

embedded processor systems in Xilinx FPGAs.

Hosted in the Eclipse IDE, the project manager

consists of two separate environments: XPS and

SDK. The SDK handles the software that will

execute on the embedded system, the SDK enables

programmers to write, compile, and debug C/C++

applications for their embedded system,Fig.4.2.

Bitstream flows shown in Fig.4.3.Configurable

memory are SRAM(Static RAM) which reconfigured

according to the bitstream files stored in Flash

PROM. Performance measurement results on the

development board, comparing the reconfiguration

speed of different architectures; the resource

utilization is also analyzed for ICAP designs in

[16],[18].

 Fig.4.1 The ICAP primitive on Xilinx FPGAs

Fig.4.2 PR design using embedded Fig.4.3 Bitstream

microcontroller Flow

 Reconfiguration Steps

 Reconfiguration is triggered

within the FPGA

 Processor core loads the desired

configuration data from external

http://en.wikipedia.org/wiki/Eclipse_(software)

Trailokya Nath Sasamal, Rajendra Prasad/ International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1898-1903

1903 | P a g e

 This could be from ROM,

Flash, static Ram loaded at

startup or filled up by the

FPGA itself

 Processor reconfigures the PR

region through the ICAP primitive

5. CONCLUSION

Virtex series FPGA have potential in terms of partial

reconfiguration but the existing

communication/reconfiguration conflict greatly limits

the scale of the system in terms of numbers of

reconfigurable units. In this paper we discuss about

existing dynamic reconfiguration techniques, medium

of reconfiguration considering Xilinx virtex-

II,Virtex-II Pro FPGA. Discuss the problem related to

module-based partial reconfiguration.

REFERENCES

[1] K. Bondalapati and V. Prasanna. “Reconfigurable

Computing systems,” in Proc. IEEE, vol. 90, no.7,

pp.1201-1217, July 2002.

[2] Katherine Compton and Scott Hauck,

“Reconfigurable Computing: A Survey of Systems

and Software,” ACM Computing Surveys, vol. 34,

no. 2, pp.171-210, June 2002.

[3] Christophe Bobda, “Introduction to

Reconfigurable Computing” Springer 2007.

[4] K. Solomon Raju, M. V. Kartikeyan, R C Joshi

and Chandra Shekhar, “Reconfigurable Computing

Systems Design: Issues at System-Level

Architectures”. The 5
th

 Annual Inter Research

Institute Student Seminar in Computer Science

(IRISS - 2006), IITM, Chennai, India, January 2006.

[5] Run-time partial reconfiguration speed

investigation and architectural design space

exploration, Ming Liu, Wolfgang Kuehn, Zhonghai

Lu, Axel Jantsch.

[6]Two Flows for Partial Reconfiguration: Module

Based or Difference Based, Xilinx website [online]

http://www.xilinx.com/support/documentation/applic

ation_notes/xapp290.pdf,

[9] K. Paulsson, M. Huebner, S. Bayar, and J.

Becker, “Exploitation of Run-Time Partial

Reconfiguration for Dynamic Power Management in

Xilinx Spartan III base Systems”, In Proc. of 2006

Reconfigurable Communication-centric SOCs,

Jun. 2007.

[10] J. Noguera and I. O. Kennedy, “Power

Reduction in Network Equipment Through Adaptive

Partial Reconfiguration”, In Proc. of the 2007 Field

Programmable Logic and Applications, pp. 240 - 245,

Aug. 2007.

[11] "An FPGA-Based Dynamically Reconfigurable

Platform: From Concept to Realization", Mateusz

Majer, Field Programmable Logic and Applications,

2006. FPL '06. International Conference on, Vol.,

Iss., Aug. 2006 Pages:1-2

[12] Modular partial reconfigurable in Virtex

FPGAs", Sedcole, P.; Blodget, B.; Anderson, J.;

Lysaghi, P.; Becker, T., Field Programmable Logic

and Applications, 2005. International Conference on,

Vol., Iss., 24-26 Aug. 2005 Pages: 211- 216

[13] "ug070 - Virtex4 User guide", www.xilinx.com

[14]"ug071- Virtex4 configuration

guide",www.xilinx.com.

[15]"Virtex Series Configuration Architecture User

Guide", www.xilinx.com.

[16]"ug208- Early Access Partial Reconfigureation

user guide", www.xilinx.com.

[17] Solomon Raju Kota, Ashutosh Gupta,

Shashikant Nayak, and Sreekanth Varma. “Module

Based Implementation of Partial Reconfiguration

Using VHDL on Xilinx FPGA,” in International

Journal of Recent Trends in Engineering, Vol 2, No.

7, November 2009.

[18] Nikolaos S. Voros and Konstantinos Masselos,

“System Level Design of Reconfigurable Systems-

on-Chip” Springer 2005.

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/

